Resource icon

SHA1 Hashing implementation in Loadrunner

  • perf-test.com need your contributions to build up a strong repository of performance engineering resources.

We were recently given a requirement to generate an obfuscated OTP value which gets generated by using a SHA1 hashing algorithm progmatically in Java code.

Upon googling we came across a free and opensource implementation which was tested and verified.

Follow following steps to generate hash values within loadrunner :

1. Create a file by the name of "lr_sha1.c"
2. Copy following content into the file

Code:
/*
*****************************************************************************
*
*  March 2010
*
*    Small changes by Kim Sandell to make the source work in LoadRunner
*    - Changed "const unsigned char" to "const char" in function params
*    - Combined sha1.h and sha1.c into one file (for ease of use in LR)
*    - Added sha1_hash() function to ease use in LR
*    - Included Paul's license in comments
*
*****************************************************************************
*
*  Freeware Public License (FPL)
*
*  This software is licensed as "freeware."  Permission to distribute
*  this software in source and binary forms, including incorporation
*  into other products, is hereby granted without a fee.  THIS SOFTWARE
*  IS PROVIDED 'AS IS' AND WITHOUT ANY EXPRESSED OR IMPLIED WARRANTIES,
*  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
*  AND FITNESS FOR A PARTICULAR PURPOSE.  THE AUTHOR SHALL NOT BE HELD
*  LIABLE FOR ANY DAMAGES RESULTING FROM THE USE OF THIS SOFTWARE, EITHER
*  DIRECTLY OR INDIRECTLY, INCLUDING, BUT NOT LIMITED TO, LOSS OF DATA
*  OR DATA BEING RENDERED INACCURATE.
*
*****************************************************************************
*
*  sha1.h
*
*  Copyright (C) 1998, 2009
*  Paul E. Jones <paulej@packetizer.com>
*  All Rights Reserved
*
*****************************************************************************
*  $Id: sha1.h 12 2009-06-22 19:34:25Z paulej $
*****************************************************************************
*
*  Description:
*      This class implements the Secure Hashing Standard as defined
*      in FIPS PUB 180-1 published April 17, 1995.
*
*      Many of the variable names in the SHA1Context, especially the
*      single character names, were used because those were the names
*      used in the publication.
*
*/
#ifndef _SHA1_H_
#define _SHA1_H_
/*
*  This structure will hold context information for the hashing
*  operation
*/
typedef struct SHA1Context
{
unsigned Message_Digest[5];       /* Message Digest (output)          */
unsigned Length_Low;              /* Message length in bits           */
unsigned Length_High;             /* Message length in bits           */
unsigned char Message_Block[64];  /* 512-bit message blocks      */
int Message_Block_Index;          /* Index into message block array   */
int Computed;                     /* Is the digest computed?          */
int Corrupted;                    /* Is the message digest corruped?  */
} SHA1Context;
/*
*  Function Prototypes
*/
void SHA1Reset(SHA1Context *);
int SHA1Result(SHA1Context *);
void SHA1Input( SHA1Context *,
const char *,
unsigned);
#endif
/*
*****************************************************************************
*
*  sha1.c
*
*  Copyright (C) 1998, 2009
*  Paul E. Jones <paulej@packetizer.com>
*  All Rights Reserved
*
*****************************************************************************
*  $Id: sha1.c 12 2009-06-22 19:34:25Z paulej $
*****************************************************************************
*
*  Description:
*      This file implements the Secure Hashing Standard as defined
*      in FIPS PUB 180-1 published April 17, 1995.
*
*      The Secure Hashing Standard, which uses the Secure Hashing
*      Algorithm (SHA), produces a 160-bit message digest for a
*      given data stream.  In theory, it is highly improbable that
*      two messages will produce the same message digest.  Therefore,
*      this algorithm can serve as a means of providing a "fingerprint"
*      for a message.
*
*  Portability Issues:
*      SHA-1 is defined in terms of 32-bit "words".  This code was
*      written with the expectation that the processor has at least
*      a 32-bit machine word size.  If the machine word size is larger,
*      the code should still function properly.  One caveat to that
*      is that the input functions taking characters and character
*      arrays assume that only 8 bits of information are stored in each
*      character.
*
*  Caveats:
*      SHA-1 is designed to work with messages less than 2^64 bits
*      long. Although SHA-1 allows a message digest to be generated for
*      messages of any number of bits less than 2^64, this
*      implementation only works with messages with a length that is a
*      multiple of the size of an 8-bit character.
*
*****************************************************************************
*/
/*
*  Define the circular shift macro
*/
#define SHA1CircularShift(bits,word) \
((((word) << (bits)) & 0xFFFFFFFF) | \
((word) >> (32-(bits))))
/* Function prototypes */
void SHA1ProcessMessageBlock(SHA1Context *);
void SHA1PadMessage(SHA1Context *);
/*
*  SHA1Reset
*
*  Description:
*      This function will initialize the SHA1Context in preparation
*      for computing a new message digest.
*
*  Parameters:
*      context: [in/out]
*          The context to reset.
*
*  Returns:
*      Nothing.
*
*  Comments:
*
*/
void SHA1Reset(SHA1Context *context)
{
context->Length_Low             = 0;
context->Length_High            = 0;
context->Message_Block_Index    = 0;
context->Message_Digest[0]      = 0x67452301;
context->Message_Digest[1]      = 0xEFCDAB89;
context->Message_Digest[2]      = 0x98BADCFE;
context->Message_Digest[3]      = 0x10325476;
context->Message_Digest[4]      = 0xC3D2E1F0;
context->Computed   = 0;
context->Corrupted  = 0;
}
/*
*  SHA1Result
*
*  Description:
*      This function will return the 160-bit message digest into the
*      Message_Digest array within the SHA1Context provided
*
*  Parameters:
*      context: [in/out]
*          The context to use to calculate the SHA-1 hash.
*
*  Returns:
*      1 if successful, 0 if it failed.
*
*  Comments:
*
*/
int SHA1Result(SHA1Context *context)
{
if (context->Corrupted)
{
return 0;
}
if (!context->Computed)
{
SHA1PadMessage(context);
context->Computed = 1;
}
return 1;
}
/*
*  SHA1Input
*
*  Description:
*      This function accepts an array of octets as the next portion of
*      the message.
*
*  Parameters:
*      context: [in/out]
*          The SHA-1 context to update
*      message_array: [in]
*          An array of characters representing the next portion of the
*          message.
*      length: [in]
*          The length of the message in message_array
*
*  Returns:
*      Nothing.
*
*  Comments:
*
*/
void SHA1Input(     SHA1Context  *context,
const char   *message_array,
unsigned     length)
{
if (!length)
{
return;
}
if (context->Computed || context->Corrupted)
{
context->Corrupted = 1;
return;
}
while(length-- && !context->Corrupted)
{
context->Message_Block[context->Message_Block_Index++] =
(*message_array & 0xFF);
context->Length_Low += 8;
/* Force it to 32 bits */
context->Length_Low &= 0xFFFFFFFF;
if (context->Length_Low == 0)
{
context->Length_High++;
/* Force it to 32 bits */
context->Length_High &= 0xFFFFFFFF;
if (context->Length_High == 0)
{
/* Message is too long */
context->Corrupted = 1;
}
}
if (context->Message_Block_Index == 64)
{
SHA1ProcessMessageBlock(context);
}
message_array++;
}
}
/*
*  SHA1ProcessMessageBlock
*
*  Description:
*      This function will process the next 512 bits of the message
*      stored in the Message_Block array.
*
*  Parameters:
*      None.
*
*  Returns:
*      Nothing.
*
*  Comments:
*      Many of the variable names in the SHAContext, especially the
*      single character names, were used because those were the names
*      used in the publication.
*
*
*/
void SHA1ProcessMessageBlock(SHA1Context *context)
{
const unsigned K[] =            /* Constants defined in SHA-1   */
{
0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
0xCA62C1D6
};
int         t;                  /* Loop counter                 */
unsigned    temp;               /* Temporary word value         */
unsigned    W[80];              /* Word sequence                */
unsigned    A, B, C, D, E;      /* Word buffers                 */
/*
*  Initialize the first 16 words in the array W
*/
for(t = 0; t < 16; t++)
{
W[t] = ((unsigned) context->Message_Block[t * 4]) << 24;
W[t] |= ((unsigned) context->Message_Block[t * 4 + 1]) << 16;
W[t] |= ((unsigned) context->Message_Block[t * 4 + 2]) << 8;
W[t] |= ((unsigned) context->Message_Block[t * 4 + 3]);
}
for(t = 16; t < 80; t++)
{
W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
}
A = context->Message_Digest[0];
B = context->Message_Digest[1];
C = context->Message_Digest[2];
D = context->Message_Digest[3];
E = context->Message_Digest[4];
for(t = 0; t < 20; t++)
{
temp =  SHA1CircularShift(5,A) +
((B & C) | ((~B) & D)) + E + W[t] + K[0];
temp &= 0xFFFFFFFF;
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for(t = 20; t < 40; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
temp &= 0xFFFFFFFF;
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for(t = 40; t < 60; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
temp &= 0xFFFFFFFF;
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for(t = 60; t < 80; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
temp &= 0xFFFFFFFF;
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
context->Message_Digest[0] =
(context->Message_Digest[0] + A) & 0xFFFFFFFF;
context->Message_Digest[1] =
(context->Message_Digest[1] + B) & 0xFFFFFFFF;
context->Message_Digest[2] =
(context->Message_Digest[2] + C) & 0xFFFFFFFF;
context->Message_Digest[3] =
(context->Message_Digest[3] + D) & 0xFFFFFFFF;
context->Message_Digest[4] =
(context->Message_Digest[4] + E) & 0xFFFFFFFF;
context->Message_Block_Index = 0;
}
/*
*  SHA1PadMessage
*
*  Description:
*      According to the standard, the message must be padded to an even
*      512 bits.  The first padding bit must be a '1'.  The last 64
*      bits represent the length of the original message.  All bits in
*      between should be 0.  This function will pad the message
*      according to those rules by filling the Message_Block array
*      accordingly.  It will also call SHA1ProcessMessageBlock()
*      appropriately.  When it returns, it can be assumed that the
*      message digest has been computed.
*
*  Parameters:
*      context: [in/out]
*          The context to pad
*
*  Returns:
*      Nothing.
*
*  Comments:
*
*/
void SHA1PadMessage(SHA1Context *context)
{
/*
*  Check to see if the current message block is too small to hold
*  the initial padding bits and length.  If so, we will pad the
*  block, process it, and then continue padding into a second
*  block.
*/
if (context->Message_Block_Index > 55)
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while(context->Message_Block_Index < 64)
{
context->Message_Block[context->Message_Block_Index++] = 0;
}
SHA1ProcessMessageBlock(context);
while(context->Message_Block_Index < 56)
{
context->Message_Block[context->Message_Block_Index++] = 0;
}
}
else
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while(context->Message_Block_Index < 56)
{
context->Message_Block[context->Message_Block_Index++] = 0;
}
}
/*
*  Store the message length as the last 8 octets
*/
context->Message_Block[56] = (context->Length_High >> 24 ) & 0xFF;
context->Message_Block[57] = (context->Length_High >> 16 ) & 0xFF;
context->Message_Block[58] = (context->Length_High >> 8 ) & 0xFF;
context->Message_Block[59] = (context->Length_High) & 0xFF;
context->Message_Block[60] = (context->Length_Low >> 24 ) & 0xFF;
context->Message_Block[61] = (context->Length_Low >> 16 ) & 0xFF;
context->Message_Block[62] = (context->Length_Low >> 8 ) & 0xFF;
context->Message_Block[63] = (context->Length_Low) & 0xFF;
SHA1ProcessMessageBlock(context);
}
int sha1_hash(const char *source, char *lrvar)
// ----------------------------------------------------------------------------
// HASH:es a string with SHA1 and stores resulting hash in lrvar variable
//
// Parameters:
//        source    Pointer to source string to HASH
//        lrvar     LR variable where base64 encoded string is stored
//
// Result
//        -1        Error
//        >0        Success. Actual value is length of HASH string
//
// Example:
//        sha1_hash( "abc", "sha1" )  // sha1=A9993E364706816ABA3E25717850C26C9CD0D89D
// ----------------------------------------------------------------------------
{
SHA1Context sha;
char buf[128];
SHA1Reset(&sha);
SHA1Input(&sha, source, strlen(source));
if (!SHA1Result(&sha))
{
lr_error_message("SHA1 ERROR: Could not compute message digest");
return -1;
}
else
{
// Clear Buffer
memset(buf,0,sizeof(buf));
// Store HASH in buffer
sprintf(buf, "%08X%08X%08X%08X%08X", sha.Message_Digest[0],sha.Message_Digest[1],
sha.Message_Digest[2],sha.Message_Digest[3],sha.Message_Digest[4]);
// Save to LR variable
lr_save_string(buf, lrvar);
// Return length of string (>0 = success)
return strlen(buf);
}
}

3. Include the file into your script as shown below
Code:
#include "lr_sha1.c"
vuser_init()
{
    return 0;
}

4. Call the hashing code as below

Code:
Action()
{
   
    // Generate hash value
    //
    sha1_hash("SPEForums - A Forum For Performance Engineers and Testers", "_sha1");
    lr_output_message( "SHA1 Hash: %s", lr_eval_string("{_sha1}") );

    return 0;
}

Output Expected:

SHA1 Hash: CE3BD9864F2440F17BB4AE260534DB2C3FDA539F

Screenshots:

upload_2016-10-27_22-43-0.png


upload_2016-10-27_22-43-28.png
Author
admin
Views
77
First release
Last update
Rating
0.00 star(s) 0 ratings

More resources from admin